基于光照归一化和ResNet18的面部表情识别方法

Illumination Normalization and ResNet18 for Facial expression recognition

ES评分 0

DOI 10.12208/j. aics.20220017
刊名
Advances in International Computer Science
年,卷(期) 2022, 2(2)
作者
作者单位

浙江树人大学信息科技学院 浙江杭州 ;

摘要
真实的人机交互场景下,人脸面部图像会受到光照等因素影响,从而降低面部表情识别准确率。针对该问题,提出了一种基于光照归一化和ResNet18的优化模型。采用直方图均衡化和线性变换加权求和的光照归一化方法对原图进行亮度平衡,并利用预训练的ResNet18网络提取面部特征;使用Softmax函数对面部表情结果进行预测。实验结果表明,该网络模型在RAF-DB和FERPlus上分别取得87.03%和87.46%识别准确率。
Abstract
In the real human-computer interaction scene, facial images of human faces are affected by factors such as lighting, which reduces the accuracy of facial expression recognition. In view of the problem, a optimization model based on improved illumination normalization and ResNet18 was proposed. The illumination normalization method of histogram equalization and linear transformation weighted summation is used to balance the brightness of the original image, and extract facial features using the pre-trained ResNet18 network; Softmax function was used to predict the facial expression results. The experimental results show that the network model achieves 87.03% and 87.46% recognition accuracy on RAF-DB and FERPlus datasets.
关键词
人机交互;面部表情识别;光照归一化;ResNet18
KeyWord
Human-computer interaction; Facial expression recognition; Illumination normalization; ResNet18
基金项目
页码 21-25
  • 参考文献
  • 相关文献
  • 引用本文

马铭骏*,崔倩芳,李晓. 基于光照归一化和ResNet18的面部表情识别方法 [J]. 国际计算机科学进展. 2022; 2; (2). 21 - 25.

  • 文献评论

相关学者

相关机构