基于疾病症状权重信息的医疗知识图谱构建

Construction of medical knowledge graph based on symptom weight information of diseases

ES评分 0

DOI 10.12208/j.ijcr.20250260
刊名
International Journal of Clinical Research
年,卷(期) 2025, 9(5)
作者
作者单位

1 嘉兴职业技术学院互联网学院 浙江嘉兴,2 嘉兴大学生物与化学工程学院 浙江嘉兴

摘要
针对互联网医疗信息冗余、真实性存疑及现有知识图谱疾病覆盖局限、症状权重缺失等问题,本研究提出一种融合多源异构数据的医疗知识图谱构建方法。通过整合权威医疗网站半结构化数据与开源医疗知识图谱,设计多阶段构建流程,并引入基于联合搜索频次的疾病-症状动态权重计算方法,最终构建了一个包含疾病症状权重信息的医疗知识图谱。该图谱不仅解决了疾病症状权重关系不明确的问题,还实现了对碎片化医疗信息的有效整合与深度挖掘,为医疗领域的相关研究提供有价值的数据资源。
Abstract
To address the challenges of redundant and unreliable internet-based medical information, as well as the limitations of existing knowledge graphs in disease coverage and symptom weight representation, this study proposes a medical knowledge graph construction method integrating multi-source heterogeneous data. By combining semi-structured data from authoritative medical websites with open-source medical knowledge graphs, a multi-stage construction framework is designed, and an innovative dynamic disease-symptom weight calculation method based on joint search frequency is introduced. The resulting knowledge graph incorporates disease-symptom weight information, resolving ambiguities in symptom-disease relationships while achieving effective integration and in-depth mining of fragmented medical data. This work provides valuable data resources for medical research and clinical decision support.
关键词
信息冗余;疾病症状权重;医疗知识图谱
KeyWord
Information redundancy; Disease-symptom weights; Medical knowledge graph
基金项目
页码 153-157
  • 参考文献
  • 相关文献
  • 引用本文

王宁,吴靖,王远,翟文彪,傅新杰*. 基于疾病症状权重信息的医疗知识图谱构建 [J]. 国际临床研究杂志. 2025; 9; (5). 153 - 157.

  • 文献评论

相关学者

相关机构