基于多头注意力GAN的药物靶点亲和力预测研究进展与展望
Research progress and prospects of drug target affinity prediction based on multi head attention GAN
ES评分 0
| DOI |
10.12208/j.ijmd.20250017 |
| 刊名 |
International Journal of Medicine and Data
|
| 年,卷(期) |
2025, 9(1) |
| 作者 |
|
| 作者单位 |
华北理工大学 河北唐山
|
| 摘要 |
近年来深度学习方法在小分子药物与蛋白质靶标的亲和力(DTA)预测领域取得了显著进展,生成对抗网络(GAN)已被应用于该领域,但当前主流方法多局限于浅层GAN架构。本文综述了基于深度学习的DTA预测方法,探讨了其在提高预测精度和模型可解释性方面的潜力。文章首先回顾了传统方法和深度学习方法的优缺点,随后重点介绍了多头注意力机制和GAN的结合应用,最后总结了当前研究的挑战和未来发展方向。
|
| Abstract |
Recent advances in deep learning have significantly improved small molecule-drug target affinity (DTA) prediction, with generative adversarial networks (GANs) emerging as a promising approach. However, current GAN-based methods primarily use shallow architectures. This paper reviews deep learning-based DTA prediction methods, examining their potential to enhance accuracy and interpretability. We compare traditional and deep learning approaches, highlight the integration of multi-head attention with GANs, and discuss current challenges and future directions.
|
| 关键词 |
DTA预测;生成对抗网络;Attention机制;SHAP
|
| KeyWord |
DTA prediction; Generate adversarial networks; Attention mechanism; SHAP
|
| 基金项目 |
|
| 页码 |
84-87 |
徐璐洋*,谢跃生,岳中乐,陈彦君,孟凡爱,陈果.
基于多头注意力GAN的药物靶点亲和力预测研究进展与展望 [J].
国际医学与数据杂志.
2025; 9; (1).
84 - 87.