基于多头注意力GAN的药物靶点亲和力预测研究进展与展望

Research progress and prospects of drug target affinity prediction based on multi head attention GAN

ES评分 0

DOI 10.12208/j.ijmd.20250017
刊名
International Journal of Medicine and Data
年,卷(期) 2025, 9(1)
作者
作者单位

华北理工大学 河北唐山

摘要
近年来深度学习方法在小分子药物与蛋白质靶标的亲和力(DTA)预测领域取得了显著进展,生成对抗网络(GAN)已被应用于该领域,但当前主流方法多局限于浅层GAN架构。本文综述了基于深度学习的DTA预测方法,探讨了其在提高预测精度和模型可解释性方面的潜力。文章首先回顾了传统方法和深度学习方法的优缺点,随后重点介绍了多头注意力机制和GAN的结合应用,最后总结了当前研究的挑战和未来发展方向。
Abstract
Recent advances in deep learning have significantly improved small molecule-drug target affinity (DTA) prediction, with generative adversarial networks (GANs) emerging as a promising approach. However, current GAN-based methods primarily use shallow architectures. This paper reviews deep learning-based DTA prediction methods, examining their potential to enhance accuracy and interpretability. We compare traditional and deep learning approaches, highlight the integration of multi-head attention with GANs, and discuss current challenges and future directions.
关键词
DTA预测;生成对抗网络;Attention机制;SHAP
KeyWord
DTA prediction; Generate adversarial networks; Attention mechanism; SHAP
基金项目
页码 84-87
  • 参考文献
  • 相关文献
  • 引用本文

徐璐洋*,谢跃生,岳中乐,陈彦君,孟凡爱,陈果. 基于多头注意力GAN的药物靶点亲和力预测研究进展与展望 [J]. 国际医学与数据杂志. 2025; 9; (1). 84 - 87.

  • 文献评论

相关学者

相关机构