基于ConvNeXt的农作物病害图像识别方法

Crop Disease Image Recognition Method Based on ConvNeXt

ES评分 0

DOI 10.12208/j.aam.20240048
刊名
Advances in International Applied Mathematics
年,卷(期) 2024, 6(4)
作者
作者单位

1 广西信息职业技术学院计算机与人工智能学院 广西南宁 ;
2 广西信息职业技术学院北斗与通信学院 广西南宁 ;

摘要
智慧农业是未来农业的发展方向。治理农作物病害最关键的问题是精确的判断病害类型。为了进一步提高农作物病害识别准确率,提出一种改进ConvNeXt的农作物病害识别方法,为了提升网络的特征提取能力,将ConvNeXt基本模块中加入无参注意力模块SimAM;为了加强通道的特征,在原有的网络结构上增加ECA(Efficient Channel Attention)注意力模块;在公开数据集PlantVillage上进行试验。结果表明:与原始的ConvNeXt模型相比,改进后的方法在不增加参数量的同时,识别准确率达到99.36%,比原模型提高了2.02个百分点,为农作物的自动化识别提供参考。
Abstract
Smart agriculture is the development direction of future agriculture. The most crucial issue in managing crop diseases is to accurately determine the type of disease. In order to further improve the accuracy of crop disease recognition, an improved ConvNeXt method for crop disease recognition is proposed. To enhance the feature extraction ability of the network, a parameter free attention module SimAM is added to the network structure of ConvNeXt; In order to enhance the characteristics of channels, an ECA attention module is added to the basic module of the model; Conduct experiments on the publicly available dataset PlantVillage. The results show that compared with the original ConvNeXt model, the improved method achieves a recognition accuracy of 99.36% without increasing the number of parameters, which is 2.02 percentage points higher than the original model, providing a reference for automated crop recognition.
关键词
智慧农业;病害识别;ConvNeXt;SimAM;注意力机制
KeyWord
Smart agriculture; Disease identification; ConvNeXt; SimAM; Attention mechanism
基金项目
页码 66-72
  • 参考文献
  • 相关文献
  • 引用本文

史茹欣,程文旗*. 基于ConvNeXt的农作物病害图像识别方法 [J]. 国际应用数学进展. 2024; 6; (4). 66 - 72.

  • 文献评论

相关学者

相关机构