登录 | 注册
人工智能应用于青光眼诊疗中的研究进展
Progress in the application of artificial intelligence to the diagnosis and treatment of glaucoma
ES评分 0 浏览量:870 下载量:1
暨南大学第二临床医学院 广东深圳 ;深圳市眼科医院 广东深圳 ;
[1] Andresen SL. John McCarthy: father of AI[J]. IEEE Intell Syst. 2002;17(5):84-85.
[2] O’Mahony N, Campbell S, Carvalho A, et al. Deep learning vs. traditional computer vision[J]. 2020,943:128-144.
[3] Li M, Jiang Y, Zhang Y, et al. Medical image analysis using deep learning algorithms[J]. Front Public Health. 2023;11: 1273253.
[4] Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040[J]. Ophthalmology. 2014;121(11):2081-2090.
[5] Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA. 2017;318(22):2211-2223.
[6] Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol. 2017;135(11):1170.
[7] Diaz-Pinto A, Morales S, Naranjo V, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation[J]. Biomed Eng Online. 2019;18(1):29.
[8] Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs[J]. Ophthalmology. 2019;126(4):513-521.
[9] Shi M, Sun JA, Lokhande A, et al. Artifact correction in retinal nerve fiber layer thickness maps using deep learning and its clinical utility in glaucoma[J]. Transl Vis Sci Technol. 2023;12(11):12.
[10] Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One. 2017; 12(5): e0177726.
[11] Riva I, Micheletti E, Oddone F, et al. Anterior chamber angle assessment techniques: a review[J]. J Clin Med. 2020 Nov 25;9(12):3814.
[12] Xu BY, Chiang M, Chaudhary S, et al. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images[J]. Am J Ophthalmol. 2019;208:273-280.
[13] Li W, Chen Q, Jiang C, et al. Automatic anterior chamber angle classification using deep learning system and anterior segment optical coherence tomography images[J]. Transl Vis Sci Technol. 2021;10(6):19.
[14] 王文赛, 邢恩铭, 秦鲁宁等. 基于深度学习的前房角开闭状态自动识别[J]. 北京生物医学工程, 2021, 40(3): 221-226.
[15] Yu J, Li W, Chen Q, et al. Automatic classification of anterior chamber angle based on ultrasound biomicroscopy images[J]. Ophthalmic Res. 2021;64(5):732-739.
[16] Camp AS, Weinreb RN. Will perimetry be performed to monitor glaucoma in 2025?[J]. Ophthalmology. 2017; 124(12): S71-S75.
[17] Li F, Wang Z, Qu G, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network[J]. BMC Med Imaging. 2018;18(1):35.
[18] Dixit A, Yohannan J, Boland MV. Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data[J]. Ophthalmology. 2021; 128(7):1016-1026.
[19] Asaoka R, Murata H. Prediction of visual field progression in glaucoma: existing methods and artificial intelligence[J]. Jpn J Ophthalmol. 2023;67(5):546-559.
[20] Li B, Chen H, Yu W, et al. The performance of a deep learning system in assisting junior ophthalmologists in diagnosing 13 major fundus diseases: a prospective multi-center clinical trial[J]. npj Digit. Med. 2024,8.
张彬,汪建涛*. 人工智能应用于青光眼诊疗中的研究进展 [J]. 国际临床研究杂志. 2024; 8; (5). 58 - 61.
吴**河南省医****** 已认证✔
2025-09-19 10:55:15
该文献是一篇较为全面、前沿的综述,较好地概括了AI在青光眼诊疗中的研究进展,尤其在使用多种影像模态(眼底、OCT、UBM、视野)方面具有代表性。作者不仅展示了AI技术的应用潜力,也客观指出了当前面临的挑战,具有较强的学术与实践价值。
Copyright © 2023 CSCIED科技核心评价数据库 版权所有 京ICP备
Email:info@cscied.com网址:www.cscied.com
互联网出版许可证违法和不良信息举报中心举报邮箱:jubao@cscied.com