人工智能技术在乳腺癌放疗靶区勾画中的应用研究

Application of three-dimensional depth-convolution neural network in clinic target volume of post-mastectomy radiation therapy

ES评分 0

DOI 10.12208/j.ijcr.20220256
刊名
International Journal of Clinical Research
年,卷(期) 2022, 6(6)
作者
作者单位

广西柳州市工人医院(广西医科大学第四附属医院)肿瘤科 广西柳州 ;

摘要
评估基于深度学习人工智能技术的放疗靶区自动勾画软件在临床应用中的价值。 方法 收集2018年9月-2022年5月在广西柳州市工人医院肿瘤科行乳腺癌乳房切除术后辅助放疗的380例患者纳入研究。将U-Net自动勾画靶区,与高年资医生手动勾画靶区进行对比,计算戴斯相似性系数(Dice Similarityco Efficient,DSC)和豪斯多夫距离(95% Hausdorff Distance, 95%HD)。结果 胸壁野的DSC,左侧为0.851±0.036,右侧为0.834±0.044;95%HD,左侧为6.579±2.890mm,右侧为9.250±7.811mm。锁骨上野的DSC,左侧为0.806±0.051,右侧为0.823±0.062;95% HD,左侧为6.823±2.695mm,右侧为6.468±2.996mm。结论 基于深度学习人工智能技术的自动勾画靶区与人工勾画相比有较好的相似性和一致性,该技术有助于提高乳腺癌放射治疗靶区的规范性及临床效率。
Abstract
Objective To evaluate the value of automatic delineation software of radiotherapy target area based on deep learning artificial intelligence technology in clinical application. Methods 380 patients who underwent adjuvant radiotherapy after mastectomy for breast cancer in the Department of Oncology, Liuzhou Workers Hospital, Guangxi from September 2018 to August 2021 were collected and included in the study. After automatic delineation of the target area using U-Net, manual modification was completed by senior physicians, and the target area before and after modification was compared to calculate the Dice Similarityco Efficient (DSC) and 95%Hausdorff Distance (95%HD). Results The DSC of chest wall field was 0.851±0.036 on the left side and 0.834±0.044 on the right side; 95%HD was 6.579±2.890mm on the left side and 9.250±7.811mm on the right side. The DSC of the supraclavicular field was 0.806±0.051 on the left and 0.823±0.062 on the right; 95%HD was 6.823±2.695mm on the left and 6.468±2.996mm on the right. Conclusion The automatic delineation software based on deep learning artificial intelligence technology has a high accuracy in delineating the target area of postoperative radiotherapy for breast cancer and can be used in clinical work with slight modification.
关键词
乳腺癌;靶区;自动勾画;放疗
KeyWord
Breast Cancer; Clinic Target Volume; Automatic Delineation; Radiotherapy
基金项目
页码 52-59
  • 参考文献
  • 相关文献
  • 引用本文

江舟,黄海欣,杨慧,陆颖*. 人工智能技术在乳腺癌放疗靶区勾画中的应用研究 [J]. 国际临床研究杂志. 2022; 6; (6). 52 - 59.

  • 文献评论

相关学者

相关机构