结合多模态数据的深度神经网络在手语识别中的应用研究

Application of deep neural networks combined with multi-modal data in sign language recognition

ES评分 0

DOI 10.12208/j.sdr.20250006
刊名
Scientific Development Research
年,卷(期) 2025, 5(1)
作者
作者单位

西南交通大学计算机与人工智能学院 四川成都

摘要
随着人工智能和计算机视觉技术的快速发展,手语识别成为人机交互和无障碍通信研究的重要方向。传统手语识别方法往往依赖单一模态数据,如图像或视频,存在信息丢失、识别精度受限等问题。多模态数据融合结合视觉、深度信息、肌电信号、IMU等,能够丰富语义表达,提高识别准确性。本文探讨深度神经网络如何结合多模态数据提升手语识别性能,分析关键技术、挑战及其应用前景,以期为智能手语翻译系统的优化提供参考。
Abstract
With the rapid development of artificial intelligence and computer vision technology, sign language recognition has become an important direction of human-computer interaction and barrier-free communication research. Traditional sign language recognition methods often rely on single modal data, such as image or video, which has problems such as information loss and recognition accuracy limitation. Multi-modal data fusion combined with vision, depth information, EMG, IMU, etc., can enrich semantic expression and improve recognition accuracy. This paper discusses how deep neural networks combine multi-modal data to improve sign language recognition performance, analyzes the key technologies, challenges and application prospects, in order to provide reference for the optimization of intelligent sign language translation system.
关键词
多模态数据;深度神经网络;手语识别;应用研究
KeyWord
Multi-modal data; Deep neural network; Sign language recognition; Applied research
基金项目
页码 28-32
  • 参考文献
  • 相关文献
  • 引用本文

李富钢*. 结合多模态数据的深度神经网络在手语识别中的应用研究 [J]. 科学发展研究. 2025; 5; (1). 28 - 32.

  • 文献评论

相关学者

相关机构