计算机技术在药物设计与发现中的应用进展

Advances in the application of computational technologies in drug design and discovery

ES评分 0

DOI 10.12208/j.ijmd.20250018
刊名
International Journal of Medicine and Data
年,卷(期) 2025, 9(2)
作者
作者单位

重庆理工大学 重庆

摘要
随着组学技术与结构生物学的快速发展,计算机技术在药物设计与发现中的作用愈加突出。本文系统综述了当前主流的计算机辅助药物设计策略,重点关注生物信息学方法(如加权基因共表达网络分析WGCNA、单细胞RNA测序scRNA-seq及机器学习)在药物靶点识别中的应用,以及基于分子结构的虚拟筛选、分子对接、分子动力学模拟、结合自由能计算和丙氨酸扫描等技术在候选小分子筛选与机制验证中的关键作用。在此基础上,进一步探讨了多种计算技术的整合应用。最后,展望了在人工智能与多模态数据驱动下,计算机辅助药物设计的未来发展趋势与面临的挑战。本研究可为交叉学科背景下的新药研发提供理论支持与技术参考。
Abstract
With the rapid advancement of omics technologies and structural biology, computational technologies have played an increasingly prominent role in drug design and discovery. This review provides a comprehensive overview of the current mainstream strategies in computer-aided drug design (CADD), with a particular emphasis on the application of bioinformatics approaches—such as Weighted Gene Co-expression Network Analysis (WGCNA), single-cell RNA sequencing (scRNA-seq), and machine learning—in the identification of drug targets. Additionally, structure-based techniques including virtual screening, molecular docking, molecular dynamics simulations, binding free energy calculations, and alanine scanning are highlighted for their critical roles in the screening of candidate small molecules and the elucidation of underlying mechanisms. On this basis, the integration and synergistic application of multiple computational technologies are further discussed. Finally, the future development trends and challenges of CADD under the influence of artificial intelligence and multimodal data are explored. This study aims to provide theoretical support and technical reference for novel drug development in interdisciplinary contexts.
关键词
计算机辅助药物设计;WGCNA;scRNA-seq;虚拟筛选;分子动力学模拟;结合自由能计算;丙氨酸扫描
KeyWord
Computer-aided drug design; WGCNA; scRNA-seq; Virtual screening; Molecular dynamics simulations; Binding free energy calculations; Alanine scanning
基金项目
页码 1-6
  • 参考文献
  • 相关文献
  • 引用本文

於振兴*. 计算机技术在药物设计与发现中的应用进展 [J]. 国际医学与数据杂志. 2025; 9; (2). 1 - 6.

  • 文献评论

相关学者

相关机构