基于激光点云的自动驾驶路面检测

LIDAR Point Cloud-based road pavement detection for autonomous driving

ES评分 0

DOI 10.12208/j.jer.20240035
刊名
Journal of Engineering Research
年,卷(期) 2024, 3(3)
作者
作者单位

中国中车股份有限公司 湖南株洲 ;
;

摘要
为了更有效地获取可通行区域内的道路路面信息,提升三维激光雷达点云特征提取及点云分割的性能,本文提出了一种基于极坐标系的路面检测算法。与笛卡尔坐标系分割相比,利用极坐标对激光雷达产生的三维数据进行处理能够实现更加均匀且精确的分割效果,同时在分割点云时引入二维CNN可以大幅减小耗时。然后将得到的点云输入到PointNet进行栅格点云特征提取并引入RingCNN,最终得到了良好的路面检测准确率,为自动驾驶提供安全可靠的可行驶区域信息。
Abstract
In order to more effectively obtain road surface information in the traversable area and improve the performance of three-dimensional laser radar point cloud feature extraction and point cloud segmentation, this paper proposes a road surface detection algorithm based on polar coordinates. Compared with Cartesian coordinate system segmentation, the use of polar coordinates to process the three-dimensional data generated by the laser radar can achieve a more uniform and accurate segmentation effect. At the same time, the introduction of two-dimensional CNN when segmenting the point cloud can greatly reduce the time consumption. Then the obtained point cloud is input into PointNet for grid point cloud feature extraction and RingCNN is introduced, and finally a good road surface detection accuracy is obtained, providing safe and reliable drivable area information for autonomous driving.
关键词
可通行区域;道路路面检测;深度学习;特征提取;点云分割
KeyWord
Traversable area; Road surface detection; Deep learning; Feature extraction; Point cloud segmentation
基金项目
页码 89-98
  • 参考文献
  • 相关文献
  • 引用本文

刘良杰*,雷志勇,胡云卿,梅文庆. 基于激光点云的自动驾驶路面检测 [J]. 工程学研究. 2024; 3; (3). 89 - 98.

  • 文献评论

相关学者

相关机构