通过单细胞测序和机器学习揭示LY6E作为肝癌关键预后标志物的潜力

Revealing the potential of LY6E as a key prognostic marker for hepatocellular carcinoma by single-cell sequencing and machine learning

ES评分 0

DOI 10.12208/j.ijcr.20240091
刊名
International Journal of Clinical Research
年,卷(期) 2024, 8(3)
作者
作者单位

广东省大型动物模型生物医学重点实验室,华南大型动物模型生物医学研究院,中国广东省江门市五邑大学药学与食品工程学院 江门广东 ;

摘要
肝癌,作为一种全球性的严重健康威胁,其发病机制错综复杂,而传统治疗方法效果有限。生物信息学和机器学习技术的融合,为在基因数据库中识别与疾病相关的基因提供了可能,为开发创新治疗方法和确定新的靶点提供了潜在途径。方法 下载人肝癌和正常的单细胞转录组测序数据,通过R程序整理分析找到在正常和疾病组差异较大的基因,通过多种机器学习进行筛选获得核心基因,然后验证核心基因的预后效果并检验其与免疫细胞和功能的相关性。结果 我们发现一批显著变化的基因。借助机器学习分析,提炼并确认了11个核心基因。同时,我们预测了核心基因的表达水平与患者的生存时间的关联揭示了核心基因与免疫细胞之间的紧密关系。结论 我们的研究在单细胞水平上展示了人的肝细胞癌模型,揭示了癌变肝脏的关键特征,包括T细胞 NK细胞的增多并通过机器学习挑选核心基因并证实了LY6E可能是影响肝癌进展的关键基因。
Abstract
Objective Liver cancer, a serious global health threat, presents complex pathogenesis and limited efficacy of traditional treatments. The integration of bioinformatics and machine learning offers a pathway to identify disease-related genes in genetic databases, paving the way for developing innovative treatments and identifying new targets. Methods Human liver cancer and normal single-cell transcriptome sequencing data were downloaded and analyzed using R programming to identify genes with significant differences between normal and disease groups. Various machine learning methods were employed to screen for core genes, which were then validated for their prognostic significance and examined for their association with immune cells and functions. Results A set of significantly altered genes was identified. Through machine learning analysis, 11 core genes were refined and confirmed. Additionally, the association between the expression levels of core genes and patient survival time was predicted, revealing a close relationship between these genes and immune cells. Conclusion Our study presents a human liver cancer model at the single-cell level, revealing key characteristics of cancerous liver, including the increase of T cells and NK cells. Machine learning was utilized to select core genes, confirming that LY6E may be a critical gene influencing the progression of liver cancer.
关键词
肝细胞癌;机器学习;单细胞测序
KeyWord
Hepatocellular carcinoma; Machine learning; Single cell sequencing
基金项目
页码 30-38
  • 参考文献
  • 相关文献
  • 引用本文

宋语牧,葛剑云,郑允文*. 通过单细胞测序和机器学习揭示LY6E作为肝癌关键预后标志物的潜力 [J]. 国际临床研究杂志. 2024; 8; (3). 30 - 38.

  • 文献评论

相关学者

相关机构