基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法

AGV charging scheduling method based on rolling time domain optimization strategyand deep Q learning algorithm

ES评分 0

DOI 10.12208/j.ijme.20230006
刊名
International Journal of Mechanical Engineering
年,卷(期) 2023, 2(1)
作者
作者单位

杭叉集团股份有限公司 浙江杭州 ;

摘要
设计基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法。首先,在滚动时域优化策略下,确定了AGV的充电状态,控制AGV的充电负荷。其次,建立AGV系统当前状态的深度Q学习算法模型,获取AGV执行相应动作的Q值。最后,计算AGV充电调度功耗,实现AGV的高效充电调度。
Abstract
An AGV charging scheduling method based on rolling time domain optimization strategy and deep Q learning algorithm was designed. Firstly, under the rolling time domain optimization strategy, the charging state of AGV is determined and the charging load of AGV is controlled. Secondly, the deep Q learning algorithm model of the current state of the AGV system is established to obtain the Q value of the AGV executing corresponding actions. Finally, the power consumption of AGV charging scheduling is calculated to achieve efficient charging scheduling of AGV.Key words: rolling time domain optimization strategy; Deep Q learning algorithm; AGV. Charge scheduling method
关键词
Q学习算法;AGV;调度方法
KeyWord
Q learning algorithm; AGV. Scheduling method
基金项目
页码 23-26
  • 参考文献
  • 相关文献
  • 引用本文

王志杰*. 基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法 [J]. 国际机械工程. 2023; 2; (1). 23 - 26.

  • 文献评论

相关学者

相关机构