基于改进遗传算法的COVID-19传染病模型参数反演

Parameter Inversion of COVID-19 Infectious Disease Model Based on Improved Genetic Algorithm

ES评分 0

DOI 10.12208/j.aics.20230018
刊名
Advances in International Computer Science
年,卷(期) 2023, 3(2)
作者
作者单位

北方民族大学 ;

摘要
本文研究了COVID-19传染病模型的参数反演问题. 首先建立COVID-19无症状感染者传染病的SEAIRD模型. 其次,利用反问题法将模型转化为目标函数的最小问题,利用改进的遗传算法获取模型参数. 最后对参数进行了敏感性分析. 结果表明,改进的遗传算法对新冠肺炎疫情模型的参数反演效果良好.
Abstract
In this paper, parameter inversion of COVID-19 infectious disease model is studied. Firstly, the SEAIRD model of infectious disease in asymptomatic COVID-19 infected persons was established. Secondly, the inverse problem method is used to transform the model into the minimum problem of the objective function, and the improved genetic algorithm is used to obtain the model parameters. Finally, the sensitivity of the parameters was analyzed. The results show that the improved genetic algorithm is effective in parameter inversion of the novel coronavirus epidemic model.
关键词
COVID-19;传染病模型;无症状感染者;参数反演;GA
KeyWord
Infectious Disease Model; Asymptomatic Infected Persons; Parameter Inversion; GA
基金项目
页码 1-7
  • 参考文献
  • 相关文献
  • 引用本文

李佳琴,李虎飞*. 基于改进遗传算法的COVID-19传染病模型参数反演 [J]. 国际计算机科学进展. 2023; 3; (2). 1 - 7.

  • 文献评论

相关学者

相关机构