登录 | 注册
基于深度学习的医疗命名实体识别的研究
A study on medical named entity recognition based on deep learning
ES评分 0 浏览量:649 下载量:0
贵州医科大学 贵州贵阳 ;
[1] Zhang, R., Zhao, P., Guo, W., Wang, R., & Lu, W. (2022). Medical named entity recognition based on dilated convolutional neural network. Cognitive Robotics, 2, 13-20.
[2] Govindarajan, S., Mustafa, M. A., Kiyosov, S., Duong, N. D., Raju, M. N., & Gola, K. K. (2023). An optimization based feature extraction and machine learning techniques for named entity identification. Optik, 272, 170348.
[3] Wang, X., Liu, R., Yang, J., Chen, R., Ling, Z., Yang, P., & Zhang, K. (2022, May). Cyber threat intelligence entity extraction based on deep learning and field knowledge engineering. In 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 406-413). IEEE.
[4] An, Y., Xia, X., Chen, X., Wu, F. X., & Wang, J. (2022). Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF. Artificial Intelligence in Medicine, 127, 102282.
[5] Rezayi, S., Dai, H., Liu, Z., Wu, Z., Hebbar, A., Burns, A. H. & Li, X. (2022, September). Clinicalradiobert: Knowledge-infused few shot learning for clinical notes named entity recognition. In International Workshop on Machine Learning in Medical Imaging (pp. 269-278). Cham: Springer Nature Switzerland.
[6] Xiong, Y., Peng, H., Xiang, Y., Wong, K. C., Chen, Q., Yan, J., & Tang, B. (2022). Leveraging Multi-source knowledge for Chinese clinical named entity recognition via relational graph convolutional network. Journal of Biomedical Informatics, 128, 104035.
[7] Li, J., Wei, Q., Ghiasvand, O., Chen, M., Lobanov, V., Weng, C., & Xu, H. (2022). A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora. BMC medical informatics and decision making, 22(3), 1-10.
莫大利*,吴冠锋,徐馨怡. 基于深度学习的医疗命名实体识别的研究 [J]. 国际医学与数据杂志. 2023; 7; (6). 9 - 13.
Copyright © 2023 CSCIED科技核心评价数据库 版权所有 京ICP备
Email:info@cscied.com网址:www.cscied.com
互联网出版许可证违法和不良信息举报中心举报邮箱:jubao@cscied.com