基于变分模态分解和支持向量回归的混沌降水量序列预测

Chaotic precipitation series prediction based on VMD and SVR

ES评分 0

DOI 10.12208/j.aam.20230001
刊名
Advances in International Applied Mathematics
年,卷(期) 2023, 5(1)
作者
作者单位

北方民族大学数学与信息科学学院 宁夏银川 ;
北方民族大学数学与信息科学学院 宁夏银川;宁夏智能信息与大数据处理重点实验室 宁夏银川 ;
宁夏智能信息与大数据处理重点实验室 宁夏银川 ;

摘要
准确的降水量预测对暴雨以及洪涝灾害的防治具有重要意义。由于传统降水量预测方法对信息挖掘能力不足,在变分模态分解(VMD)基础上结合机器学习提出一种改进的变分模态分解和支持向量回归(VMD-SVR)预测方法。以郑州市为例,首先分析了该城市1979-2020年逐月降水量序列的混沌特性;其次对降水量序列的原始序列数据、相空间重构数据和变分模态分解数据进行预测,结果显示变分模态分解后的数据预测性能较高;最后对比三种机器学习算法预测变分模态分解数据结果的精度,发现VMD-SVR模型预测精度最高。
Abstract
Accurate precipitation prediction has a great significance to the prevent and control of rainstorm and flood disasters. Due to the lack of information mining ability of traditional precipitation prediction methods, the improved Variational Mode Decomposition (VMD) and Support Vector Regression (VMD-SVR) prediction method was proposed. Taking Zhengzhou as an example, firstly the chaotic characteristics of monthly precipitation series in the city from 1979 to 2020 were analyzed. Secondly, the original series data, phase space reconstruction data and variational mode decomposition data of precipitation series are predicted. The results show that the data prediction performance after variational mode decomposition is higher. Finally, the prediction accuracy of the three machine learning algorithms was compared, the VMD-SVR model was found to have the highest prediction accuracy.
关键词
变分模态分解;支持向量回归;混沌时间序列;降水量预测
KeyWord
Variational Mode Decomposition; Support Vector Regression; Chaotic Time Series; Prediction of precipitation
基金项目
页码 13-22
  • 参考文献
  • 相关文献
  • 引用本文

郝政,马少娟*,陈泓霖. 基于变分模态分解和支持向量回归的混沌降水量序列预测 [J]. 国际应用数学进展. 2023; 5; (1). 13 - 22.

  • 文献评论

相关学者

相关机构