| 作者单位 |
Institutes for Policy Research (IPR) and Innovations in Developmental Sciences ; Department of Psychology, Temple University, Philadelphia, PA 19122, USA ; Departments of Psychology and Neuroscience, University of Georgia, Athens, GA 30602, USA ; Department of Psychology and Program in Neuroscience, Emory University, Atlanta, GA 30322, USA ; Department of Psychiatry, Yale University, New Haven, CT 06519, USA ; Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, University of California, Irvine, CA 92697, USA ; Center for Visual Science, Departments of Psychiatry, Neuroscience and Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA ; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA ; Department of Psychology, Northwestern University, Evanston, IL 60208, USA ;
|
| Abstract |
Early detection and intervention with young people at clinical high risk (CHR) for psychosis is critical for prevention efforts focused on altering the trajectory of psychosis. Early CHR research largely focused on validating clinical interviews for detecting at-risk individuals; however, this approach has limitations related to: (1) specificity (i.e., only 20% of CHR individuals convert to psychosis) and (2) the expertise and training needed to administer these interviews is limited. The purpose of our study is to develop the computerized assessment of psychosis risk (CAPR) battery, consisting of behavioral tasks that require minimal training to administer, can be administered online, and are tied to the neurobiological systems and computational mechanisms implicated in psychosis. The aims of our study are as follows: (1A) to develop a psychosis-risk calculator through the application of machine learning (ML) methods to the measures from the CAPR battery, (1B) evaluate group differences on the risk calculator score and test the hypothesis that the risk calculator score of the CHR group will differ from help-seeking and healthy controls, (1C) evaluate how baseline CAPR battery performance relates to symptomatic outcome two years later (i.e., conversion and symptomatic worsening). These aims will be explored in 500 CHR participants, 500 help-seeking individuals, and 500 healthy controls across the study sites. This project will provide a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational methods that can be used to facilitate the earliest possible detection of psychosis risk.
|