统计学中的贝叶斯方法:贝叶斯推断在数据挖掘中的应用
Bayesian methods in statistics: application of Bayesian inference in data mining
ES评分 0
| DOI |
10.12208/j.aam.20240014 |
| 刊名 |
Advances in International Applied Mathematics
|
| 年,卷(期) |
2024, 6(1) |
| 作者 |
|
| 作者单位 |
西华大学 四川成都 ;
|
| 摘要 |
贝叶斯方法在数据挖掘领域发挥着关键作用,它通过构建概率模型来揭示数据背后的潜在规律和模式。在文本分类、关联规则挖掘以及异常检测与预测等方面,贝叶斯方法具有显著优势。作为一种基于概率论的统计推断方法,贝叶斯推断在数据挖掘领域得到了广泛应用,有助于我们更深入地理解和分析复杂数据。在文本分类、情感分析、垃圾邮件检测、金融风控等领域,贝叶斯推断展现了其独特优势。展望未来,随着计算能力的提升、算法的优化,以及与深度学习等先进技术的深度融合,贝叶斯推断将继续在数据挖掘领域发挥关键作用,为人工智能的发展和应用带来更多可能性与机遇。
|
| Abstract |
Bayesian methods play a key role in the field of data mining by constructing probabilistic models to reveal the underlying laws and patterns behind the data. Bayesian methods have significant advantages in text classification, association rule mining, and anomaly detection and prediction. As a statistical inference method based on probability theory, Bayesian inference is widely used in the field of data mining, which helps us understand and analyse complex data more deeply. In the fields of text classification, sentiment analysis, spam detection, financial risk control, etc., Bayesian inference shows its unique advantages. Looking ahead, with the improvement of computing power, optimisation of algorithms, and deep integration with advanced technologies such as deep learning, Bayesian inference will continue to play a key role in the field of data mining, bringing more possibilities and opportunities for the development and application of artificial intelligence.
|
| 关键词 |
贝叶斯方法;数据挖掘;统计学
|
| KeyWord |
Bayesian methods; Data mining; Statistics
|
| 基金项目 |
|
| 页码 |
13-17 |
杨军*.
统计学中的贝叶斯方法:贝叶斯推断在数据挖掘中的应用 [J].
国际应用数学进展.
2024; 6; (1).
13 - 17.