广义Nekrasov矩阵的新判定条件

New criteria for generalized Nekrasov matrices

ES评分 0

DOI 10.12208/j.aam.20240023
刊名
Advances in International Applied Mathematics
年,卷(期) 2024, 6(3)
作者
作者单位

1 沈阳航空航天大学理学院 辽宁沈阳 ;
2 桂林航空工业学院理学院 广西桂林 ;

摘要
广义Nekrasov(非奇异H-矩阵)矩阵在经济数学、控制理论、数值代数等诸多领域中发挥了重要的作用,本文研究了广义Nekrasov矩阵的判定条件问题。从矩阵的元素出发,利用不等式放缩的方法,构造正对角矩阵因子,给出了广义Nekrasov矩阵几种新的判别方法,推广了一些已有的结果.最后用数值算例证明了所得结论的有效性。
Abstract
Generalized Nekrasov(non-singular H-matrix) matrix plays an important role in many fields such as economic mathematics, control theory, numerical algebra, etc. In this paper, the decision conditions of generalized Nekrasov matrix are studied. Starting from the elements of matrix, the positive diagonal matrix factors are constructed by means of inequality reduction, and several new discriminant methods for generalized Nekrasov matrix are given. Finally, a numerical example is used to illustrate the validity of the conclusion.
关键词
Nekrasov矩阵;非奇异H-矩阵;广义Nekrasov矩阵
KeyWord
Nekrasov matrix; Non-singular H-matrix; Generalized Nekrasov matrix
基金项目
页码 6-14
  • 参考文献
  • 相关文献
  • 引用本文

刘丹*,孙旭,班雪映,周立新. 广义Nekrasov矩阵的新判定条件 [J]. 国际应用数学进展. 2024; 6; (3). 6 - 14.

  • 文献评论

相关学者

相关机构