利用导数求含参不等式恒成立问题中参数取值范围的方法
Methods of finding the range of parameters in the problem of constant establishment of parametric inequality by derivative
ES评分 0
| DOI |
10.12208/j.aam.20231006 |
| 刊名 |
Advances in International Applied Mathematics
|
| 年,卷(期) |
2023, 5(2) |
| 作者 |
|
| 作者单位 |
扬州大学 江苏扬州 ;
|
| 摘要 |
导数是高中数学的重要内容,它的应用广泛,能够解决许多函数问题,在高考数学中也常常作为压轴题出现,其中求含参不等式恒成立问题中的参数取值范围是它的热门题型之一,这类题一般难度偏大,涉及的知识点全面、复杂,对学生的数学素养要求较高,本文梳理了近年来的高考题和模拟题,总结出解决这类问题常用的四种方法,希望这篇文章能对解决这类问题提供一些帮助。
|
| Abstract |
Derivative is an important content of senior high school mathematics, which can solve many function problems, and it often appears as the finale in college entrance examination mathematics. Among them, finding the range of parameters in the problem of constant inequality with parameters is one of its popular questions, which are generally difficult, involve comprehensive and complex knowledge points and require high students mathematical literacy. This paper sorts out the college entrance examination questions and simulation questions in recent years, and summarizes four commonly used methods to solve such problems. I hope this article can.
|
| 关键词 |
导数;高考数学;不等式恒成立问题;解题方法
|
| KeyWord |
Derivative; College entrance examination mathematics; Inequality is a constant problem; method solving problem
|
| 基金项目 |
|
| 页码 |
11-19 |
颜祁秀*,魏俊潮.
利用导数求含参不等式恒成立问题中参数取值范围的方法 [J].
国际应用数学进展.
2023; 5; (2).
11 - 19.