登录 | 注册
基于SEAIRD-LSTM混合模型对传染病的预测分析
Prediction analysis of infectious diseases based on SEAIRD-LSTM hybrid prediction model
ES评分 0 浏览量:873 下载量:0
北方民族大学 ;
[1] Ciotti M, Ciccozzi M, Terrinoni A, et al. The COVID-19 pandemic[J]. Critical reviews in clinical laboratory sciences, 2020, 57(6): 365-388.
[2] Lipsitch M, Swerdlow D L, Finelli L. Defining the epidemiology of Covid-19—studies needed[J]. New England journal of medicine, 2020, 382(13): 1194-1196.
[3] Bulut C, Kato Y. Epidemiology of COVID-19[J]. Turkish journal of medical sciences, 2020, 50(9): 563-570.
[4] Jiao J, Liu Z, Cai S. Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible[J]. Applied Mathematics Letters, 2020, 107: 106442.
[5] Fu B, Yang Y, Ma Y, et al. Attention-based recurrent multi-channel neural network for influenza epidemic prediction[C]. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018: 1245-1248.
[6] Doni A R, Sasipraba T. LSTM-RNN Based Approach for Prediction of Dengue Cases in India[J]. Ingénierie des Systèmes d'Information, 2020, 25(3).
[7] Derr T, Ma Y, Fan W, et al. Epidemic graph convolutional network[C]. Proceedings of the 13th International Conference on Web Search and Data Mining, 2020: 160-168.
[8] 谢黎颖. 基于时空序列的传染病发展趋势预测[D]. 东华大学, 2021.
[9] da Silva T T, Francisquini R, Nascimento M C V. Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil[J]. Expert Systems with Applications, 2021, 182: 115190.
[10] 何振欢, 肖建华. 基于EEMD-LSTM模型的禽霍乱预测研究[J]. 动物医学进展, 2022, 43(11):34-38.
[11] 赖晓蓥, 钱俊. ARIMA-LSTM-XGBoost加权组合模型在肺结核发病趋势预测的研究[J]. 现代预防医学, 2021, 48(01):5-9.
[12] 冯晨, 陈志德. 基于XGBoost 和LSTM 加权组合模型在销售预测的应用[J]. 计算机系统应用, 2019, 28(10): 226-232.
李佳琴,李虎飞*. 基于SEAIRD-LSTM混合模型对传染病的预测分析 [J]. 国际应用数学进展. 2023; 5; (2). 1 - 10.
赵**四川省骨****** 已认证✔
2025-11-04 10:26:07
传染病预测模型要依据可获得数据来源、数据分布和特征来选择合适的预测模型,并不是所有“流行”的模型才是最合适。选择最为合适的模型,是获得准确预测的前提和基础。
Copyright © 2023 CSCIED科技核心评价数据库 版权所有 京ICP备
Email:info@cscied.com网址:www.cscied.com
互联网出版许可证违法和不良信息举报中心举报邮箱:jubao@cscied.com